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Note 

On Numerical Differentiation on a Nonuniform Grid 

It is well known that if the mth derivative of a function F(x) is approximated with 
the values of F at k (>m) points xi, x1,..., xk, the maximum accuracy attainable is in 
general of order hkpm if h is of the order of the typical distance between pairs of 
points [ 11. For instance, if the first derivative at point x, , F’(xA), is estimated in 
terms of the values of F at x, , x,, xc we have 

F’(xA)=‘(xc -xd2[F’(xd - F(X.dI - C-G -x,J*[F(xc) -f’(x.dI + Och2j 
(XB - x,4 k - x‘4 k - xi?) 

c1I 

On a nonuniform mesh, formulas such as this one may cause numerical difficulties 
when two points are so close together that the denominator becomes small. Another 
difficulty is encountered when one (or more) points move, for instance, against a 
fixed grid, for in this case the magnitude of the denominator cannot be controlled by 
a suitable layout of the initial grid spacing. An obvious remedy for such a problem is 
the prescription that if B, for instance, becomes too close to A, then another point, B’, 
should be used in place of B in this formula. The problem here is more subtle, but 
may be just as severe since the sudden shift from the triple (A, B, C) to (A, B’, C) 
may introduce inaccuracies and dangerous perturbations in the calculation. 

In this note we wish to discuss an alternative procedure which has been found to 
be very satisfactory. While actual numerical results will be discussed in a 
forthcoming paper on potential flows with a free surface [2], in view of its general 
applicability and usefulness, it seemed appropriate to present the basic concept in the 
present note directed to a wider audience. 

Essentially, the idea is to make use of (k + l), rather than k, points not to increase 
the accuracy, but to eliminate the aforementioned problems. For ease of exposition we 
shall refer to a particular example with a simple physical content. Extensions and 
generalizations are immediate. 

Consider the problem of a material point in rectilinear motion under the action of 
a conservative force described by the potential F(x). Suppose that the potential is 
known on a grid of points of uniform spacing h, and at the position occupied by the 
material point itself. The problem is to evaluate the force F’(x) at the position xP 
occupied by the material point using the values of F ar xP, x,, xc,,.. (see Fig. 1). 
According to our general procedure, we shall make use of four points, P, B, C, D to 
attain a precision of order h*, and we shall exploit the remaining freedom to reach 
our other objectives. 
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FIG. 1. Moving point on a fixed uniform grid. 

According to the method of undetermined coefficients [ 1 ] we set 

f (aFp + ,!?F, + yF, + SF,) = F'(xp) + O(h'), (2) 

where Fp = F(xp), etc. Expanding in Taylor series about the point xP we have from 
this equation 

a+/l+y+b=O, 

@+(1 +B)y+(2+8)6=-1, 

e2p + (1 + Q2y + (2 + S>'S = 0, 

W 

(3b) 

(3c) 

where 

e= XP - x3 

h ' 

is the quantity which can become undesirably small. Clearly, 0 < 6’ < 1. The system 
(3) has infinitely many solutions. We are interested in that family of solutions which 
remain bounded as 0-+ 0. An immediate consequence of (3b) and (3~) is 

p=- 2+e+u+m 
28 * 

A sufficient condition for /3 to be bounded is that 

y=2[8f(e)- 11, t4a) 

where the functionf(B) is arbitrary but such that f(0) is bounded. In terms off the 
solution of (3) is then 

a=2 l+f 
2+e’ p=+-(1 +e)f, 

6= 2+3e-2e(i +e)f 
2(2 + e) * (44 

The class of solutions (4) is clearly of the desired form. The residual arbitrariness 
in the choice off can be used to confer additional useful properties to the differen- 
tiation formula. For instance, one may require the formula to reduce to the standard 
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three-point formula for a uniform grid when xP = xB (i.e., B = 0) or xP = xA (i.e., 
6 = 1). This can be obtained if a(O) = 3. p(O) = 0, y(O) = -2, 6(O) = 4 and a( 1) = !, 
P(l)=-2, r(l)=+; 6(1)=0, respectively. All these requirements are satisfied by 

f(O) = $3 f(l)=& (5) 

If f is continuous, this choice has the desirable feature that, as P moves from B to A, 
the influence of point B slowly increases, and correspondingly the influence of D 
decreases. This avoids the adverse effect of switching abruptly from one triple of 
points to a different one when 0 or (1 - 0) becomes too small. A simple form off 
satisfying (5) is a linear function, 

f(6) = 4 + $? (6) 

With this choice Eqs. (4) become 

3 
a =i, p = - S&5 + 369, 

y=-2+e+3e*, S=$(l-8)(2+38). 
(7) 

It is obvious that many other useful forms for f(13) can be investigated. One 
possibility would be, for example, to render small the contribution of the terms of 
order h3 in some sense suitable for a particular problem. However it appears that the 
two conditions (5) should always be satisfied to avoid the second difficulty mentioned 
at the beginning. 
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